Categories
Climate Short Form

Is Nuclear Our Only Hope or a Waste of Time?

Side #1: Investing In More Nuclear Is A Waste of Time

Building more nuclear power plants doesn’t make sense: they’re too expensive, take too long to build, and are fundamentally unsafe with the safety risks only increasing as the environment deteriorates.

The Cost and Time To Build Nuclear Plants Is Astronomical

Nuclear energy cannot economically compete with wind and solar. The cost of generating solar power ranges from $36 to $44 per megawatt hour (MWh), while onshore wind power comes in at $29–$56 per MWh. Nuclear energy costs between $112 and $189 – more than three times as much.

The Vogtle nuclear plant in Georgia, only the second reactor built in the US since 1996, is estimated to cost $27 billion and has been under construction for almost 10 years. Once fully built, Vogtle will generate about 2,200 MW of power. In comparison, the fully operational Bhadla Solar Park in India took 4 years to build, generates 2,245 MW of power, and cost $1.3 billion. If you had reinvested the remaining $25 billion set aside for the Vogtle plant into solar you would generate nearly 20 times the power and saved 6+ years.

The Bhadla Solar Park in Rajasthan, India is the world’s largest solar farm cost only $1.3 billion compared to $27 billion for the Vogtle nuclear plant and was built 6 years faster to produce the same amount of energy.

Some may argue that learning by doing with nuclear plants will lead to standardization and cost savings. The evidence for that is limited. In France, the country with the most successful and expansive nuclear program covering 70-80% of the country’s electricity, construction costs have actually risen over time rather than fallen . This is due to rising labor costs, more complex reactors, and new regulations imposed after the Chernobyl and Fukushima accidents.

One study has shown that we can get 90% of the way to zero carbon electricity with no new nuclear by 2035 if we double the amount of wind and solar in this decade and triple it in the next decade. Accomplishing this will require substantial investments in battery storage technology, high-voltage transmission lines, and more efficient production methods. Unfortunately, we’ve invested more government R&D support into nuclear than any other type of renewable. If this changes now we could resolve many of the issues preventing real clean energy from being scaled at the level necessary.

There’s No Solution to the Nuclear’s Safety Problems

Radioactive waste remains active for up to 250,000 years. As of today, there is no permanent solution as to where waste can be stored. Right now nuclear plants are employing a temporary solution to store waste on-site in dry casks. The Nuclear Regulatory Commission has said this method is only safe for 60 years.

A permanent disposal site in Yucca Mountain, Nevada, has been surveyed, studied, and debated since 1987 but continually faces political hurdles and may never become a nuclear storage site (or it does and could become a nuclear volcano).

Nuclear waste dry cask storage containers stored on site at a nuclear plant.

Some argue that the elegant solution to the nuclear waste problem is reprocessing. This is where the fission products and unused uranium in spent fuel can be continually re-used to generate additional nuclear fuel rather than being sealed and discarded.

President Jimmy Carter banned reprocessing in 1977 due to fears of the process creating plutonium, which could be used to make nuclear
weapons. But President Reagan lifted the ban in 1981. The problem is that the cost of reprocessing exceeds using the cost of using new fuel as long as the price of uranium remains low. At current prices of uranium, reprocessing increases the cost of generating electricity making it even less competitive against renewables.

The problem with maintaining and cleaning up nuclear waste is not just that it’s incredibly expensive and poses proliferation risks – it will get more dangerous because of climate change.

Nuclear reactors, like this one in Belgium, will faced increased risks from sea level rise and hurricanes as they are located near bodies of water.

Nuclear has to be close to a body of water or coast because of the need to access large amounts of water to cool the nuclear fuel rods before they overheat. These are the same areas that will experience increasing flooding, hurricanes, and sea level rise as the climate crisis worsens. This will increase the risk of meltdowns and release of nuclear waste – like the release of radioactive waste water into the Pacific Ocean following the meltdown of the Fukushima reactor in Japan.


Side #2: Nuclear Power is Our Only Chance To Get To Net-Zero

While nuclear may be expensive right now with potential environmental vulnerabilities, there is simply no other carbon-free electricity source available today that can meet the size and scale of today’s energy demand and what’s needed in the future.

Nuclear Supports An Equitable Transition, Unlike Renewables

Yes, building new reactors is expensive. But this is mostly just true in the U.S. It’s because there is not enough repetition and standardization to get cost savings. China, Japan, India and South Korea have gotten there. South Korea had an average decline in the costs of nuclear of 2%. Small modular reactors promise to transform the speed and cost of bringing new plants online by taking 1/2 to 1/3 as much time with at least 15-17% cost reduction.

The more important point is to look at comparative costs if we didn’t have nuclear at all. Every year 442 global nuclear reactors reduce 1.2 billion tons of emissions. Just keeping existing plants open would be far less expensive than developing and bringing online new renewable technologies to remove the same amount of emissions.

Lastly, the cost of nuclear has multiple layers. Detractors of nuclear focus on one dimension of cost which is the cost per MWh. But there are significant social costs in cities where coal plants are being shut down and entire communities are losing their livelihoods and identity. Nuclear power provides better economic prospects for job-retraining paying 37% more than wind and solar as well as providing long-term jobs not just temporary jobs to install solar panels or wind turbines (which require very little long term operational support).

Jobs in the nuclear industry pay 37% more than the wind and solar energy with longer-term jobs making them a bigger part of a Just Transition as coal plants are retired around the country affecting local communities and economies .
Wind and Solar Cannot Match the Reliability of Nuclear

Nuclear is largest source of carbon free baseload power. Period. It’s the only energy source that can supply electricity throughout the day and night in a zero carbon way. That alone will make it a necessary part of a net-zero economy.

Right now nuclear comprises of nearly 20% of the U.S. electricity supply – more than 10x the amount currently coming from solar. Because of the vast variability in amount sunshine and strength of wind, renewables suffer from a severe amount of unpredictability when it comes to grid management. As a result, on their own they are incapable of meeting current U.S. energy demand necessitating fossil fuels to fill the gap.

But renewables are not only unreliable from an intermittency standpoint – they’re also very vulnerable from a supply chain standpoint. For example, technologies for battery storage and solar panels carry large mineral and mining costs. Nearly half of the minerals and raw materials used for solar cells come from the Xinjiang region of China where there are allegations of forced labor camps being used for production. By contrast, the United States has an abundant domestic uranium supply estimated to last 100-years.

A Chinese worker in Xinjiang inspects solar panels being developed. The solar panel supply chain is highly dependent on China with accusations of forced labor making access vulnerable to shocks.

Lastly, is is the issue global renewable adoption. Other countries don’t have the option of solar and wind because of geographical constraints in terms of how windy or sunny their countries are. For them, nuclear may be the only way to go carbon free. The U.S. only represents about 11% of all carbon emissions in the world, so for the remaining 89% nuclear may be their only way to substantially decarbonize. 

Nuclear’s Safety Issues Are A Solvable Problem

The safety discussion around nuclear is happening on an uneven playing field. In the real world, the safety of nuclear should not be compared to renewables, but to coal. The reality is that solar and wind cannot replace coal as a continuous source of energy supply. If the 20% of the electricity mix from nuclear goes down, it will at least in part be filled by coal and natural gas.

However, the health effects of coal and natural gas plants have been normalized compared to the fear of radiation exposure. The deaths from air pollution and cancer as a result of sulfur dioxide, arsenic, nitrous oxide, and particulate matter exposure coming from coal plants dwarfs the number of people who have died from nuclear power by orders of magnitude. Suffice it to say, nuclear is not causing 800,000 pre-mature deaths every year like coal. Similarly, fracking for natural gas has known links to asthma symptoms, childhood leukemia, cardiac problems, and birth defects in surrounding communities.

Due to the current mix of energy supply, coal will replace nuclear causing much more detrimental health effects compared to potential nuclear radiation exposures.

Coal also releases more radiation than nuclear waste. Burning coal gasifies its organic materials into fly ash which contain radioactive elements like uranium and thorium. Chinese fly ash on its own has .4 pounds of triuranium octoxide/MT.

In fact, the entire amount of nuclear waste created in the U.S. would fill one football field, 10 yards deep. By comparison, a single coal plant generates as much waste by volume in one hour as all nuclear power plants have in their entire history. If we want to comprehensive get rid of coal, nuclear is our best bet.

Aside from the issue of fossil fuel substitution, nuclear plants do not necessarily need to be subject to climate disasters. Following Fukushima, nuclear engineers have created concrete solutions to avoid rising sea levels and hurricane floods. These include relocating the plants 6 miles inland, building 50-foot tsunami walls, using a lead acid battery backup system, and relocating the diesel generators to a higher site.

Lastly, the obvious answer to the waste problem is reprocessing. Nuclear facilities can and should reprocess nuclear fuel and use it to generate additional fuel. Plutonium can be blended with uranium to create mixed-oxide fuel (MOX) that could burn in ordinary reactors and also render plutonium no longer usable for weapons. UK, France, several other EU countries, and Japan have been using MOX for years.

France’s Orano La Hague reprocessing facility. More than 34,000 metric tons of spent fuel has been treated here since the site’s operation in 1976

Frankly, the threat of nuclear proliferation with nuclear plants has had 70 years of data to be proven true. Since the 1950s, 132 commercial reactors in 35 U.S. states have been licensed for operation. Today, 104 remain in operation at 65 sites in 31 states. Globally, 442 reactors are in operation in 30 countries. Where’s the dirty bomb? It hasn’t happened. Terrorists cannot simply just pick up some uranium and make a bomb. This worst case scenario should not be driving our energy policy when the planet is facing more immediate threats.

Conclusion

While nuclear may seem dangerous and expensive, it does provide a major pathway to large-scale decarbonization. However, given the cost and time needed for new nuclear plants to come online and significantly reduce global emissions, putting that money into wind and solar infrastructure and battery storage would likely achieve the same results faster and without the potential environmental draw backs.

Ultimately, even if we starting build more nuclear reactors now they will take an average of 10 years to build, by which time the green energy transition will have to be mostly complete. There’s no guarantee that new types of reactor designs, like small modular reactors, will be quicker to build or financially competitive and there is no time or money to waste.

Rather than investing any more time or money into building new nuclear plants, the existing ones should be kept online with the remainder of R&D investment going towards new solar and wind.

About The Author

Chetan Hebbale is currently a graduate student at the Johns Hopkins School of Advanced International Studies (SAIS) in Washington, D.C. focused on international economics, climate change, and sustainability.

Prior to this, he spent over 4 years at Deloitte Consulting working on technology and strategy projects at the CDC and U.S. Treasury Department.

He is a native of Atlanta, GA and attended the University of Georgia.

Read More:

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s